
Smoke Simulator
Summer 2020 CS184 - Computer Graphics

Team 19 : Nishant Kalonia, Katie Kim, Yifan Zhang

University of California, Berkeley

August 14, 2020



Outline

Introduction

Pipeline

Shaders

References



Introdction
For our final project, we created a smoke simulator using Three.js framework
and WebGL (encapsulated within Three.js). The smoke is animated using three
different components - pressure, and density, and temperature. Each
operation that occurs changes these components, which then affects how the
smoke is rendered on the screen.



Frameworks and Web Tools
Three.js was what we used to visualize and animate the simulation. Then with
the help of WebGL, a Javascript API, we were able to include our graphics in
the form of a website. Other tools that we used include dat.gui which created
the controller to change what feature of the smoke we’re colouring by (i.e.
temperature, density, etc.).



Pipeline Overview
Every time step we update the
velocity field of our simulation. The
three main updates that occur to the
velocity field is advection, external
forces, and projection. Other fluids
may also include a diffusion step
(to add viscosity), but the viscosity
of smoke is nearly non-existent
and thus the step is skipped.



Shaders
Each operation that we implemented was represented using a fragment
shader. The main shaders included Advection, External Forces, and Projection.



Advection
Updates the velocity
field based on the velocity field.



External Forces
The velocity field is updated to account for any external forces acting upon the
field. For our case the only external force is buoyancy. The buoyant force at a
particular fragment is determined by a temperature and density field that is
advected by the velocity field at the beginning of each time step.



Projection
This portion involves three steps:

1. Compute the
divergence of the velocity field.

2. Solving the Poisson equation for
pressure p using Jacobi iteration.

3. Subtracting the Gradient of p
from the velocity field.

This section involves 3 fragment shader programs - Jacobi (usually executed
>20 times), Divergence and Gradient.



References
• GPU Gems: https://developer.nvidia.com/gpugems/gpugems/part-vi-
beyond-triangles/chapter-38-fast-fluid-dynamics-simulation-gpu

• Github of similar project: https://github.com/mharrys/fluids-2d

• Jacobi Method: https://en.wikipedia.org/wiki/Jacobi_method


	Introduction
	Pipeline
	Shaders
	References

